Origin of the long-wavelength magnetic modulation in $Ca_3Co_2O_6$

L. C. Chapon*

ISIS Facility, Rutherford Appleton Laboratory–STFC, Chilton, Didcot, OX11 0QX, United Kingdom (Received 20 November 2008; published 23 November 2009)

The origin of the long-wavelength incommensurate magnetic structure of $Ca_3Co_2O_6$ is discussed considering possible interchains super-superexchange paths. The experimental value of the propagation vector $k = (0,0,\Delta)$ with $\Delta > 1$ can be reproduced only if one considers the next-nearest super-superexchange interaction. A spin-dimer analysis using the extended Huckel tight-binding method confirms that, despite longer interatomic Co-Co distances, the latter interaction is indeed much stronger. The stability of the observed structure with respect to certain commensurate states is discussed.

DOI: 10.1103/PhysRevB.80.172405

PACS number(s): 75.50.Ee, 75.30.Gw, 75.30.Fv

The magnetic properties of Ca₃Co₂O₆ have attracted considerable interest in the last decade, as this compound is considered as an exact experimental realization of an Ising triangular lattice.¹ Among the properties long debated were the nature of the ordered magnetic state and the still ambiguous origin of the steps in the magnetization measurements at low temperature,^{2–4} reminiscent of that seen in singlemolecule magnets.⁵

In the $Ca_3Co_2O_6$ crystal structure only one of the two inequivalent Co³⁺ sites, in trigonal prismatic coordination, is magnetic with a spin-state S=2 and a large orbital contribution. It is well established that these magnetic sites are strongly coupled ferromagnetically within chains running along the c axis and that adjacent chains on the triangular lattice are coupled by weak antiferromagnetic (AFM) interactions in the *ab* plane.⁶ Major insight into the physics of these systems have been given by density-functional theory studies.^{7,8} However, the magnetic properties to date have been undertaken mostly in the framework of a quasi-twodimensional (2D) lattice, i.e., considering a simple ferromagnetic stacking of AFM triangular planes neglecting the true three-dimensional nature of the exchange interactions. Such approximation, justified in the light of the magnetic structures reported earlier,⁶ has been challenged by the recent work of Agrestini et al.^{9,10} Using first magnetic x-ray diffraction⁹ and then neutron diffraction,¹⁰ these authors have unambiguously established that the magnetic structure is in fact incommensurate, with a modulation along the c axis of very long periodicity (~ 1000 Å). Clearly, such a structure cannot be stabilized in the quasi-2D limit since the only magnetic interaction along c is ferromagnetic. In order to understand the origin of the proposed ground state it is important to reconsider all possible exchange interactions in the system.

In the present communication, I analyze the energy of the magnetic structure considering only isotropic exchange terms and two different super-superexchange (SSE) interactions forming helical paths between adjacent chains of the triangular lattice. In this framework, the observed magnetic modulation cannot be explained by considering only the nearest neighbor (noted J_2) AFM SSE but requires the presence of a nonvanishing next-nearest AFM SSE terms (J_3) which can uniquely stabilize the experimental value of the magnetic propagation vector. A spin-dimer analysis using the extended Hukel tight-binding (EHTB) method, shows that J_3

is indeed the predominant interchain coupling term due to a stronger overlap in the molecular orbital involving the Co 3d xz and yz state. While the observed structure corresponds to the first-ordered state, for small values of J_3 its exchange energy is energetically unfavorable with respect to certain commensurate structures with equal moments, suggesting that the former is stabilized due to a lower entropy.

The magnetic structure reported by Agrestini et al.¹⁰ corresponds to a longitudinal amplitude modulation propagating along the c axis of the hexagonal cell (space group $R\overline{3}m$, hexagonal setting),¹¹ as illustrated in Fig. 1. In agreement with previous reports, the magnetic moments are aligned along the c axis, fixed by the strong single-ion axial anisotropy.^{3,4} However, what differs from previous studies is the amplitude modulation or spin-density wave (SDW), i.e., the existence of regions in each chain with quasinull ordered moments. It implies that the magnetic configuration within a triangular unit (three adjacent chains) approaches C1=(+, +)-,0) only at some particular point along the chain (see Fig. 1), unlike the proposed partially disordered antiferromagnet (PDA) structure^{12,13} which maintains this configuration along the entire chain. At other lattice points the configuration is almost C2= $(+\frac{1}{2},+\frac{1}{2},-\frac{1}{2})$ (Fig. 1) and, if the structure is truly incommensurate, any other intermediate situations between C1 and C2 are found somewhere in the crystal. Such mag-

FIG. 1. (Color online) Left: Sketch of the experimental magnetic structure of $Ca_3Co_2O_6$ showing the longitudinal amplitude modulation for three adjacent chains running along the *c* axis (25 unit cells are displayed). Specific values of the in-plane magnetic configuration (0, 1, -1) and $(-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$ are also shown. Middle and right: Schematic drawing of interchain super-superexchange paths between cobalt site 1 (1) and site 2 (2) for J_2 (middle) and J_3 (right). The ferromagnetic intrachain coupling (J_1) is also shown.

netic arrangement usually originates from competing interactions along the chains in the presence of axial anisotropy since, for isotropic systems, competing interactions would simply lead a noncollinear state with fully ordered moments. The propagation vector in the hexagonal setting is $\mathbf{k}_{H}=2\pi$ $(0,0,\Delta)$, with $\Delta \sim 1.01$ at 18 K. Δ varies with temperature, suggesting a true incommensurability rather than a locking at a particular fractional value. The fact that $\Delta > 1$ is of particular importance, as will be discussed in the following sections.

For describing the magnetic structure, it is actually more convenient to work in the primitive rhombohedral setting,¹¹ which will be used in the rest of the communication. In the rhombohedral setting of space group $R\overline{3}m$, the unit-cell dimensions are a=b=c=6.274 Å and $\alpha=\beta=\gamma=92.53^{\circ}$. There are two magnetic Co sites per unit cell, S_1 and S_2 , at respective fractional coordinates $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ and $(\frac{3}{4}, \frac{3}{4}, \frac{3}{4})$. In this setting, the co-chains are running along the [1,1,1] direction (also the direction of axial anisotropy), and the propagation vector is $\mathbf{k} = 2\pi(\frac{\Delta}{3}, \frac{\Delta}{3}, \frac{\Delta}{3})$. The magnetic structure derived experimentally by Agrestini et al.¹⁰ corresponds to a mode belonging to a single irreducible representation, in agreement with the theory of second-order transition, noted Γ_1 in Kovalev's notation.¹⁴ For this mode, the cobalt magnetic moments **M** on S_1 (**M**₁) and S_2 (**M**₂), in a unit-cell translated by **R**_L $=(R_x, R_y, R_z)$ with respect to the zeroth-cell, are written as follows:

$$\mathbf{M}_{1}(\mathbf{R}_{L}) = \mathbf{M} \cos(\mathbf{k} \cdot \mathbf{R}_{L}),$$
$$\mathbf{M}_{2}(\mathbf{R}_{L}) = -\mathbf{M} \cos(\mathbf{k} \cdot \mathbf{R}_{L} + \pi\Delta), \qquad (1)$$

where **M** is a vector pointing along [1,1,1], whose length is the amplitude of the SDW. The energy of this structure can be calculated, in the limit of isotropic exchange interactions, considering the intrachain ferromagnetic interaction J_1 , interchain SSE interactions and a phenomenological single-ion anisotropy term DS². Given the crystallographic parameters, two SSE interactions, mediated through Co-O-O-Co paths, must be taken into account. They correspond to interchain nearest (J_2) and next-nearest (J_3) neighbors, at interatomic Co-Co distances of 5.513 Å and 6.274 Å respectively. Each site $(S_1 \text{ or } S_2)$ has six neighbors connected through J_2 and six neighbors connected through J_3 . The list of neighbors is given in Table I. These SSE interactions, form helical paths between Co sites of adjacent chains within a triangular motif, as shown in Fig. 1, clearly competing with the ferromagnetic intrachain exchange, when J_2 or/and J_3 are antiferromagnetic. The energy of the magnetic mode found experimentally is easily calculated by summing on all lattice cells (\mathbf{R}_{I}). The total energy, taking the convention J < 0 for AFM interactions, is decomposed into a normal (E_N) and umklapp (E_U) terms,

$$E_N = \frac{1}{2}M^2 \left[J_1 \cos(\pi\Delta) + 3J_2 \cos\left(\frac{\pi\Delta}{3}\right) - 3J_3 \cos\left(\frac{2\pi\Delta}{3}\right) + D \right],$$
(2)

TABLE I. List of super-superexchange paths for Ca₃Co₂O₆. S₁ and S₂ refer to the two Co positions in the primitive rhombohedral unit-cell, at fractional coordinate of $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ and $(\frac{3}{4}, \frac{3}{4}, \frac{3}{4})$ respectively, while R_m refer to the translation of site *j* with respect to site *i*.

SSE interaction	Site <i>i</i>	Site j	R_m
J ₂	S_1	S_2	(-1, 0, 0)
	S_1	S_2	(0, -1, 0)
	S_1	S_2	(0, 0, -1)
	S_1	S_2	(-1, -1, 0)
	S_1	S_2	(-1, 0, -1)
	S_1	S_2	(0, -1, -1)
J ₃	$S_{1(2)}$	$S_{1(2)}$	(1,0,0)
	$S_{1(2)}$	$S_{1(2)}$	(-1, 0, 0)
	$S_{1(2)}$	$S_{1(2)}$	(0,1,0)
	$S_{1(2)}$	$S_{1(2)}$	(0, -1, 0)
	$S_{1(2)}$	$S_{1(2)}$	(0,0,1)
	$S_{1(2)}$	$S_{1(2)}$	(0, 0, -1)

$$E_{U} = \frac{M^{2}}{2N} \sum_{R_{I}} J_{1} [\cos(2\mathbf{k} \cdot \mathbf{R}_{L})\cos(\pi\Delta)] + 3J_{2} \left[\cos(2\mathbf{k} \cdot \mathbf{R}_{L})\cos\left(\frac{\pi\Delta}{3}\right)\right] - 3J_{3} \left[\cos(2\mathbf{k} \cdot \mathbf{R}_{L})\cos\left(\frac{2\pi\Delta}{3}\right)\right] + D[\cos(2\mathbf{k} \cdot \mathbf{R}_{L})].$$
(3)

When the structure is incommensurate, as found experimentally, one needs to consider only the nonvanishing normal term in Eq. (2). By derivating E_N with respect to Δ , we obtain

$$J_1\sin(\pi\Delta) + J_2\sin\left(\frac{\pi\Delta}{3}\right) - 2J_3\sin\left(\frac{2\pi\Delta}{3}\right) = 0.$$
 (4)

The parameter Δ varies in the first Brillouin zone, i.e., $\Delta \leq 3/2$. Let's consider FM J_1 (>0) and AFM J_2 and J_3 . By imposing nearest interchain neighbors only ($J_2 < 0$, $J_3=0$), there are solutions uniquely for $\Delta \leq 1$, since the terms in J_1 and J_2 must have opposite signs in Eq. (4). However, if one considers only FM J_1 and $J_3 < 0$, it is possible to stabilize solutions with $\Delta > 1$, as observed experimentally. In particular, reproducing the experimental value of $\Delta \sim = 1.01$ requires $J_3 = -0.018J_1$.

Fresard *et al.*¹⁵ already singled-out that J_3 is a relevant parameter, based on a shorter O-O distance than that of J_2 . This argument is often valid, as shown by the work of Whangbo and co-workers in a variety of insulating oxides.¹⁶ Based on the crystal structure derived by neutron diffraction at 18 K, the O-O distance of 2.908 Å for J_3 is indeed shorter than for J_2 (2.937 Å), despite a much longer Co-Co distance (6.274 Å instead of 5.513 Å). The dihedral angles along the J_3 Co-O-Co path also maximize the orbital overlap as shown next. The SSE energy can be derived semiquantita-

FIG. 2. (Color online) Bounding molecular orbitals (involving the Co d_{xz} , d_{yz} levels) of the dimer Co₂O₁₂^{18–} corresponding to supersuperexchange paths along J_2 and J_3 , calculated from the extended Huckel tight-binding method. The energy diagram shows the corresponding values of the squared energy difference between bounding and antibounding states (see text for details).

tively by a spin-dimer analysis based on the extended Huckel tight-binding method using double- ξ Slater orbitals for the O s and p states and Co d states.¹⁶ Here, each dimer $Co_2O_{12}^{18-1}$ along J_2 and J_3 is considered in turn and the exchange energy is directly estimated from the square of the energy difference between the bounding and antibounding levels.¹⁶ In the present case, one needs to take into account the multielectron configuration (d^4 , S=2 ground state). Since the point symmetry is high $(\overline{3}m)$, only the overlap between nonorthogonal orbitals is relevant for the calculations as explained in.¹⁶ The spin-dimer analysis has been performed with the program CAESAR 2.0,¹⁷ using slater parametrizations for Co and O atoms given in.¹⁸ In trigonal prismatic configuration (point group $\overline{3}m$), the Co d orbitals are splitted into one singly degenerate level (z^2) and two doubly degenerate levels: (x^2-y^2, xy) and (xz, yz). The z^2 level is fully occupied and does not contribute. The four unpaired electrons occupy the doubly-degenerated levels, the latter lying higher in energy. The spin-dimer analysis shows that the energy difference between bounding and antibounding states involving the (x^2) $-y^2$, xy) orbitals are not dramatically different for J_2 and J_3 (considered alone they would lead to $J_2=1.6J_3$). The dimer levels involving the Co (xz, yz) states, form two nonbounding molecular orbitals (no interaction within the numerical accuracy) and a pair of bounding and antibounding state, both in the cases of the J_2 and J_3 dimers, as displayed in Fig. 2. However the energy gap separating the two latter states is much stronger in the case of J_3 (31 meV) than for J_2 (7.3 meV), providing a coupling through these orbitals about 20 times stronger for J_3 . This result, even though semiquantitative, supports entirely the conclusions conveyed previously in the analysis of the exchange energy, and the initial assumption of Fresard *et al.*¹⁵ highlighting the crucial role of the next-nearest SSE interaction in this system.

I now turn to the stability of the SDW structure. One can easily shows that it corresponds to the first ordered state, which can be derived as a function of the propagation vector k=(x, y, z) for various sets of exchange integrals $\{J_{ij}\}$. Here the anisotropy, whose effect is to stabilize a SDW rather than a noncollinear configuration but does not affect the propagation, is not considered. The ground state is obtained by cal-

FIG. 3. (Color online) (a) First ordered state of $Ca_3Co_2O_6$ for isotropic exchange interactions, considering a unitary ferromagnetic intrachain coupling $(J_1=1)$ and a wide range of supersuperexchange interchain coupling parameters (J_2, J_3) . The value of propagation vector component Δ is color coded. (b) Energy difference between a SDW and the commensurate structure with $k = (\frac{1}{2}, \frac{1}{2}, 0)$ shown in the inset as a function of J_3/J_1 or Δ .

culating the eigenvector corresponding to the maximum eigenvalues of the Fourier transform of the exchange-integral matrix ξ_{ij} ,¹⁹

$$\xi_{ij}(\mathbf{k}, \{J_{ij}\}) = \sum_{m} J_{ij}(\mathbf{R}_{m}) \exp(-i\mathbf{k} \cdot \mathbf{R}_{m}).$$
(5)

The indices *i* and *j* refer to the magnetic atoms in a primitive cell (S_1 and S_2). $J_{ij}(R_m)$ is the isotropic exchange interaction between the spins of atoms *i* and *j* in units cells separated by the lattice vector R_m , as listed in Table I. In our case, there are only two magnetic atoms per unit-cell and the two by two Hermitian ξ_{ij} matrix is simply written:

where:

B =

$$\xi_{ij}(\mathbf{k}, \{J_{ij}\}) = \begin{pmatrix} A & B \\ B^* & A \end{pmatrix}, \tag{6}$$

$$A = 2J_3[\cos(x) + \cos(y) + \cos(z)]$$
$$J_1(1 + e^{i(x+y+z)}) + J_2(e^{ix} + e^{iy} + e^{iz} + e^{i(x+y)} + e^{i(x+z)} + e^{i(y+z)}).$$

The phase diagram was generated numerically with the program ENERMAG,²⁰ performing a grid search of \mathbf{k} within the first Brillouin zone for various sets of exchange parameters. J_1 was fixed to 1, while J_2 and J_3 were varied between -5and +5. As expected from the form of ξ_{ii} , invariant by permutation of x, y, and z, the only type of propagation vector stabilized varies along a line with x=y=z. The phase diagram is represented in Fig. 3. In two large regions, the propagation vector $\mathbf{k}=0$ is stabilized, with either FM or AFM configurations. In addition, there is a large region of incommensurability corresponding to $\mathbf{k} = 2\pi (\frac{\Lambda}{3}, \frac{\Lambda}{3}, \frac{\Lambda}{3})$. As already derived from analysis of the Γ_1 magnetic mode energy, the line $J_3=0$ stabilizes only $\Delta \le 1$ and the experimental value of $\Delta = 1.01$ requires $J_3 \neq 0$. However, one can also show that an ordered commensurate (CM) phase with equal moments, not obtained as first ordered state, has a lower exchange energy than the SDW structure. The structure, presented in the inset of Fig. 3 propagates with a single k $=(\frac{1}{2},\frac{1}{2},0)$. Every magnetic site is fully ordered and has four out of its six first neighbors aligned antiparallel and two aligned parallel. For values of $|J_3/J_1| < 1.7$, the exchange energy of this structure is lower than the SDW, as presented in Fig. 3. Moreover, the values of Δ decrease on cooling according to the resonant x-ray study,⁹ i.e., the CM structure should be increasingly favorable. This indicates that the

SDW structure, as observed, is stabilized only thanks to a smaller configuration entropy. The presence of competing terms in the free energy (exchange and entropy) could explain the crossover regime observed at the so-called freezing temperature $T \sim 18$ K, temperature below which the coherence length of the SDW is suddenly reduced.¹⁰

In conclusion, I have shown that the long-wavelength magnetic modulation in $Ca_3Co_2O_6$ originates from the existence of interchain AFM super-superexchange terms forming helical paths running between adjacent chains of the triangular motif. The analysis of the energy and first ordered ground state in the isotropic exchange limit, and a spin-dimer analysis, points to the next-nearest-exchange interaction as the critical parameter to reproduce the propagation found experimentally. It is argued that this phase it stabilized thanks to a lower configuration entropy than other configurations with constant moments.

I would like to acknowledge Daniel Khomskii and Paolo G. Radaelli for fruitful discussions and critical reading of the manuscript.

*l.c.chapon@rl.ac.uk

- ¹G. H. Wannier, Phys. Rev. **79**, 357 (1950).
- ²H. Kageyama, K. Yoshimura, K. Kosuge, M. Azuma, M. Takano, H. Mitamura, and T. Goto, J. Phys. Soc. Jpn. **66**, 3996 (1997).
- ³H. Kageyama, K. Yoshimura, K. Kosuge, H. Mitamura, and T. Goto, J. Phys. Soc. Jpn. **66**, 1607 (1997).
- ⁴A. Maignan, C. Michel, A. C. Masset, C. Martin, and B. Raveau, Eur. Phys. J. B **15**, 657 (2000).
- ⁵ A. Maignan, V. Hardy, S. Hébert, M. Drillon, M. R. Lees, O. Petrenko, D. M. K. Paul, and D. Khomskii, J. Mater. Chem. 14, 1231 (2004).
- ⁶S. Aasland, H. Fjellvag, and B. Hauback, Solid State Commun. **101**, 187 (1997).
- ⁷V. Eyert, C. Laschinger, T. Kopp, and R. Fresard, Chem. Phys. Lett. **385**, 249 (2004).
- ⁸H. Wu, M. W. Haverkort, Z. Hu, D. I. Khomskii, and L. H. Tjeng, Phys. Rev. Lett. **95**, 186401 (2005).
- ⁹S. Agrestini, C. Mazzoli, A. Bombardi, and M. R. Lees, Phys. Rev. B 77, 140403(R) (2008).
- ¹⁰S. Agrestini, L. C. Chapon, A. Daoud-Aladine, J. Schefer, A.

Gukasov, C. Mazzoli, M. R. Lees, and O. A. Petrenko, Phys. Rev. Lett. **101**, 097207 (2008).

- ¹¹International Tables for Crystallography, Volume A, edited by Th. Hahn (Springer-Verlag, 2006).
- ¹²M. Mekata, J. Phys. Soc. Jpn. 42, 76 (1977).
- ¹³K. Wada and T. Ishikawa, J. Phys. Soc. Jpn. **52**, 1774 (1983).
- ¹⁴O. V. Kovalev, *Irreducible Representations of Space Groups* (Gordon and Breach, New York, 1965).
- ¹⁵R. Fresard, C. Laschinger, T. Kopp, and V. Eyert, Phys. Rev. B 69, 140405(R) (2004).
- ¹⁶M.-H. Whangbo, D. Dai, and H. J. Koo, Solid State Sci. 7, 827 (2005).
- ¹⁷J. Ren and M.-H. Whangbo, CAESAR 2.0 Primecolor Software, Inc., Madison, WI, 1998.
- ¹⁸H.-J. Koo, K.-S. Lee, and M.-H. Whangbo, Inorg. Chem. 45, 10743 (2006).
- ¹⁹M. J. Freiser, Phys. Rev. **123**, 2003 (1961).
- ²⁰G. Rousse, J. Rodriguez-Carvajal, C. Wurm, and C. Masquelier, Solid State Sci. 4, 973 (2002).